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This note provides an analysis of the vibrations of the magnet

pedestal system of the Argonne Advanced Photon Source. It consists of two 

parts and an appendix. Part I is a discussion ~f how to calculate the normal 

modes of the system. In Part II, the normal mode method is employed to study 

the response of the system to various kinds of excitations, in particular, to 

the ground motion. Some technical information is included in the appendix to 

make this note self-consistent. The dipole system is chosen to be an example 

to carryon explicit calculations and the main numerical results are 

summarized in Tables 1 and 2 and Figures 2 and 4. 
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Part I 

Normal Modes of the Magnet-Pedestal System 

A simplified model of the magnet-pedestal system of the Argonne 

Advanced Photon Source is a uniform girder supported by two elastic pedestals 

with stiffness k, see Fig. 1. This model can be used for an approximate 

calculation of the transverse vibration normal modes of the system. The 

method used in this part is similar to that of Ref. 1, but with different 

boundary conditions in solving the Euler equation. In the following, we give 

a brief description of this method. 

The free transverse vibration of a uniform girder obey~ the Euler 

equa tion 

Let 

4 a2 
EI!..L4 + P.LL2 = 0 • 

ax at 

y(x, t) - Y(x) 
i21Tft 

e 

then (1) is reduced to an ordinary differential equation 

where 

f = normal mode frequency of the system (Hz), 

p = mass density of the girder (lb/in), 

E = Young's modulus of the girder (lb/in2 ), 

I = moment of inertia of the girder (in4). 

(3) 
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The general solution to Eq. (3) is of the form 

(4) 

where the subscript i indicates the solution of the ith part of the girder 

(for instance, i = 1, 2, 3 in Fig. 1). The coefficients A, B, C and Dare 

determined by the boundary conditions, which in our case can be described in 

the following way. The boundaries a and d in Fig. 1 are free ends. 

Therefore, both the moment and the shear force are zero, i.e., 

I Y" = 0 

Y'" = 0 

On boundary b, in addition to a zero moment, the sum of the shear and the 

elastic force should be zero, namely, 

Y" = Y" .. 0 
1 2 

EI(Y'" - Y"') - k Y = 0 121 
for x 

The same conditions apply to boundary c, with the subscripts 1 and 2 in 

(5) 

(6) 

Eq. (6) replaced by 2 and 3, respectively. Thus, we have altogether 12 

boundary conditions associated with 12 unknown coefficients (Ai's, Bi's, 

etc.). The equations of the boundary conditions can be written in the vector 

form 

H u = 0 , (7) 

where 

u = (8) 
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is a l2-dimensional vector and H a 12 x 12 matrix derived from Eqs. (5) and 

(6). Following the method of Ref. 1 to simplify the calculation, one 

expresses Ai and Ci as the functions of Bi and Di and, correspondingly, Eqs. 

(7) and (8) are reduced to 

H u 0, 

with 

u = 

a 6-dimensional vector and H a 6 x 6 matrix. In order to have non-zero 

solution u to (7'), we require that 

det H = 0 

The values of f, which satisfy (9), are then the normal frequencies of the 

system. The explicit form of H is given as follows: 

1 -1 0 0 

_a~l) _a~1) a(2) 
1 

a(2) 
2 o 

-a~ 1) a (1) 
4 

a(2) 
5 

-a~ 2) 

H = 

_a~2) -a~ 2) a(3) 
1 

a(3) 
2 

o a(2) 
- 3 

a(2) 
4 

a(3) 
5 

_a~3) 

0 0 a (3) 
7 

a (3) 
8 

(7' ) 

(8' ) 

(9 ) 

(10) 



where 

a· (j) 
1. 

b (j) 
1 

b (j) 
2 

b (j) 
3 

b (j) 
4 

b (j) 
5 

b (j) 
6 

b (j) 
7 

b<J) 
i = ~~~------~-ch 61. - cos 61. ' 

J J 

= -2 sh 61j + Cl(ch 61j 

= 2 sin 6ij - Cl(ch Si j 

= sh Si j . cos Sij 

= ch 6i j . sin Sij , 

= sh Si j , 

= sin Bi j , 

= Cl(l - ch Sij cos SR.j 

5 

- cos Sij ) 

- cos Sij ) , 

- sh 6ij . sin 6R. j ) 

b (j) 
8 = Cl(l - ch 61j cos Sij + sh Sij sin Sij ) , 

and 
EI 3 Cl = ~ S (dimensionless). 

Eq. (9) can be solved numerically by invoking the subroutine DFACT of the CERN 

math library. Once the normal frequencies are known, the corresponding normal 

modes can be obtained by calling another subroutine, EISRG1, of the CERN 

library. 

As an example, we calculate the first three modes of the dipole 

system of the GeV light source. The data used in the calculations are: 

m (mass) = 9500 lb, 

L ( length) = 100 in, 

E = 29 x 106 lb/in2 , 

I = 2190 in4 , 
k = 10 x 105 lb/in. 
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The results of the normal frequencies are listed in Table 1 below, 

and those of the normal modes (for i l = 22.3 in) are shown in Fig. 2. 

Table 1. 

Normal Frequencies of the Dipole System 

Ro l (in) 1 10 20 22.3* 25 

fl (Hz) 40.79 46.44 53.12 54.77 56.79 

f2 (Hz) 77.45 80.08 82.29 83.27 83.94 

f3 (Hz) 208.01 268.87 407.30 459.88 538.26 

* when Ro l = 0.223 L, the deflections at center and ends are the 
same. 

The same method can be employed to calculate the normal modes of the 

girder supporting the combination of quadrupoles and sextupoles of the GeV 

light source. 

Several conclusions can be drawn from our results: (i) The natural 

vibration frequencies of the system are adjustable (by changing Ro l ) in a 

certain range. (ii) The first and the second harmonics are not too far away 

from each other (f 2 < 2f l ). This fact may be of concern because it might 

result in wide resonance bands. Fortunately, this does not happen in our case 

(see Part II). (iii) The two points of the girder where the pedestals are 

located give large deflections (see Fig. 2). Therefore, for a girder 

supporting several quadrupoles and sextupoles, one should (if possible) avoid 

these points when arranging the magnets. On the other hand, the "rest" points 

of the girder, Rl and R2 in Fig. 2, are insensitive to vibrations. Thus, one 

could put magnets there without much concern about their vibrations. 
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Part II 

Response of the Magnet-pedestal System to the Ground Motion 

The knowledge of the normal modes and frequencies of the magnet

pedestal system, which we have in Part I, is important in considering the 

response of the system to various kinds of excitations. This is due to the 

fact that the differential equations of motion are decoupled when the 

displacements are expressed in terms of the normal modes. This can be seen in 

the following way. 

In the presence of the driving force, F(x, t), and the damping 

force, c it, Eq~ (1) is modified and takes the form 

in which c is the viscous damping per unit length and is assumed to be a 

constant (in unit lb • sec/in2). (Another kind of damping, the structural 

damping, which is proportional to the internal elastic force, has been 

ignored.) 

( 11) 

By using the normal mode method (see Ref. 2), we let the solution 

y(x,t) of Eq. (11) be written as 

y(x,t) = I y(S) (x) q(S) (t). (12) 
s=l 

where y(s) (x) (dimensionless) is the sth normal mode with normal frequency 

ws (= 2 nfs) and q(s) (t) (unit in [in]) is to be determined through 

Eq. (11). Theoretically, the upper limit of the summation, n, should go to 

infinity, whereas practically, summation over first few modes will be, in 

general, good enough. Inserting the right-hand-side of Eq. (12) into Eq. (11) 

and interchanging the order of summation and differential, we get 

(s) iq(s)} 
+ p y 2 = F(x,t). 

dt 
(13 ) 



8 

Multiplying y(p) and integrating over the whole length of the girder on both 

sides, Eq. (13) becomes 

d 
= J dx F(x,t) y(p). (14) 

a 

One can show that y(p) and y(s) are orthogonal to each other (see Appendix), 

namely 

{o, if s 1: p. 
N , if s = p. 

p 
(15) 

In which Np is the square of the normalization factor with unit [in]. In view 

of Eqs. (15) and (3), we have 

It follows from Eq. (14) that 

o , if s 1: p. 

2 
p w N, if s = p. 

p p 

2 () dq(P) d2q(P) d 
p w q p + c + p = J dx 

y(p) 
F(x,t) --w

p P dt dt2 a 

(16) 

(17) 

Note that this differential equation for the pth mode is decoupled from those 

for all other modes. This is actually the main advantage of this method. 

Eq. (17) is an ordinary differential equation for a forced-damped vibration of 

a system with just ~ degree of freedom, which can be solved by the standard 

method. (Recall that the original system is continuous and has infinitely 

many degrees of freedom!) Also note that in Eq. (17), pWp
2 replaces the 

spring stiffness k in the conventional form of the vibration equation of one

degree-of-freedom system. 

To solve Eq. (17), instead of considering a general driving force, 

we will content ourselves with the special case in which the driving force 

takes the form 

F(x,t) (18) 
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In other words, the driving force is harmonic with a magnitude Fo and a 

frequence 00; it affects the system only through the two pedestals at band 

c. Furthermore, the phase difference between Fb and Fc is assumed to be zero 

for the current discussion. Plugging Eq. (18) into the right-hand side of 

Eq. (17), we get 

2 () dq(P) d2 q(P) y(P)(b) + y(p)(c) ioot 
poo q P + c + P = F ( ) e (19 ) 

p dt dt2 o· Np 

in which y(P)(b) and y(p)(c) are the values of y(p)(x) at points band c, 

respectively. The solution to Eq. (19) can be written as 

In this expression, the amplitude is expressed by 

where ~p is the damping factor: 

c 

(20) 

(21) 

(22) 

in which the denominator (cc)p = 2pwp is the critical damping coefficient of 

the pth mode. The phase, ~P' in Eq. (20) has the following expression 

2~ 
00 

-1 P 00 

~p = tan p (23) 
1 - (~)2 

00 p 

As we mentioned before, the term poo 2 p in the numerator of the expression of 
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h(P), Eq. (21), is analogous to a spring with stiffness 

(Recall that for a simple one-dimensional harmonic oscillator, one has 

k = mw 2.) The term 

(24) 

(25) 

is the total strength of the driving force for the pth mode. Therefore, one 

can define the dynamic amplification factor of the pth mode, M(P), which is 

the ratio of the dynamic output to the static output, in the following way: 

(p) h(P) 
M = ~~--

F(P)/k 
P 

1 

The plot of M(P) and 'p is shown in Fig. 3. The resonance occurs at 

* 2 til = til 1-2Z; p pip 

• til (for small z; ) , p p 

with the maximum value of M(P) 

M(P) = __ 1 __ 
max ,....-~-

2Z; It-z; 2 
p p 

1 
• -2-- (for small z; ). 

z;p p 

(26) 

(27) 

(28) 
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Another quantity, which may be of even more interest to us, is the 

transmissibility T. Because the driving force in our case is most likely 

induced by the ground motion, one can express the force directly in terms of 

the displacement ZeiOlt , of the ground motion·. Here again, we assume that the 

ground motion at location band c has the same amplitude, frequency and phase 

in order to simplify the calculations below. The equivalent magnitude of the 

force due to the ground motion is 

F = kZ, 
o 

(29) 

in which k is the stiffness of the pedestals. The amplitude of q(p) now takes 

the form 

(30) 

The transmissibility, which is the ratio of the dynamic output to the dynamic 

input, can then be expressed as (for the pth mode) 

=--
Z 

k y(P)(b) + y(p)(c) 
=--2 ( N )x (31) 

pOl P 
P 

The plot of T(P) as a function of (: ) and ~p is similar to that of M(P) in 

Fig. 3. p 
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In view of Eqs. (12), (20), (23), (30) and (31), the solution to 

Eq. (11) can be written as 

(32) 

As an example of applications of this method, we consider again the 

dipole system of the GeV light source with the parameters given in Part I. 

Assume that t1 = 22.3 inches. The first three normal frequencies are listed 

in Table 1. Note that f3 »f1 • The second mode (denoted by II in Fig. 2) is 

asymmetric which leads to the cancellation of y(2)(b) by y(2)(c). The 

associated transmissibility, T(2), is thus equal to zero. This is 

understandable because no asymmetric modes would be driven by the (currently 

assumed) symmetric driving force. It follows that the approximate solution to 

Eq. (11) can be expressed by a sum of just two terms: 

We now consider five different cases: 

(i) Low frequency region: 00 < wI < 003· 

In this case, we have 

• 2.3 x 10-3 , 



... 0.2 x 10-3 , 

and 

13 

iwt e 

The maximum amplitude occurs at the supporting points band c and has the 

value 

= (2.4 x 10-3 + 0.08 x 10-3 ) x z iwt e (34) 

It is apparent that the first mode is dominant in the low-frequency region. 

(ii) Resonance at the 1st normal frequency: 00 = 001 < 003. 

Assume that the damping factor 

/;;1 = 0.005 , (35) 

then one has 
M(1) 1 = 100 = , 

2/;;1/1-/;;1
2 

M(3) = 1, 

'1 
11' 

=2" 

'3 = 0 , 
T(1) ... 0.23 

T(3) (negligible) 



and 
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(1) 
y(x, t) '" 0.23 x Y (x) x Z x 

i(wt- 2!.) 
2 

e 

The maximum amplitude occurs in the middle point and has the value 

y max( t) 0.26 Z e 

(iii) High frequency region: wI < 00 < 003. 

In this case, 

'I = 1T 

'3 
= 0 

T(l) = 0 

T(3) = 0.2 x 10-3 , 

and 

The maximum amplitude which occurs at points band c is 

(36) 

-4 iwt 
Y (t) = 0.8 x 10 x Z e (37) 

max 

(iv) Resonance at the 3 rd normal frequency: wI < 00 = 003. 

Assume the same damping factor as in (ii) 

~ 3 = 0.005. (38) 



We get 

and 

M(3) :z ___ 1 __ = 100 , 

2'(.31 1-'(.3
2 

~1 = '11' 

'11' 
~3 = 2" 

T(3) = 0.02 

15 

'11' i(wt- -) 
y(x,t) = 0.02 x y(3)(x) x Z e 2 

The maximum amplitude occurs at the supporting points band c. Its 

value is 

i(wt- 2!..) 
( t) = 0.8 x 10-2 Z e 2 Ymax (39 ) 

(v) Very high frequency region: wI < 003 < 00 • 

In this case, our assumption that there is no phase difference 

between the forces Fb and Fc is no longer valid. (The ground wave propagation 

velocity is about 2500 m/sec. At a frequency of 500 Hz, the wavelength is 

5 m. Thus the distance between band c is about 1/4 of the ground wave 

length.) Nevertheless, this should not be of concern because both T(l) and 

T(3) virtually vanish at this frequency region anyway. 

From the aboye results, one can get the ratio Ymax/Z, which we will 

call the vibration magnification factor. The results are summarized in 

Table 2 and are shown in Fig. 4. 



16 

Table 2 

The vibration magnification factor of the dipole system 

Driving frequency 

(f = w/2'1f) 

t 
Ymax 

Z 
0.25 x 10-2 0.26 0.8 x 10-4 0.8 x 10-2 o 

t Ymax and Z are the vibration amplitudes of the girder and of the ground 

motion, respectively. The damping factor ~ is assumed to be 0.005 in the 

calculations (this is a relatively small value and is equal to the damping 

factor of the steel spring). 

tt f1 = 54.77 Hz and f3 = 459.88 Hz for 11 = 22.3 inches (see Table 1). 

Discussions: 

a. The vibration magnification factor is surprisingly small in all the 

cases above. Even at the first resonance with a quite small damping 

factor (~ = 0.005 is that of the steel spring) the magnification 

factor is still less than 1. This is basically due to the fact that 

the ratio of the stiffness of the pedestals to the equivalent 

stiffness of the girder [see Eq. (24)], k/pwp2, is very small (less 

than 10-3 in our case). Thus the driving force caused by the ground 

motion is significantly reduced when it is transmitted to the girder. 

b. The second normal mode, which is asymmetric, might become important 

if the phase difference between Fb and Fc is close to 'If. However, 

this would require a driving frequency close to 1000 Hz, which is far 

beyond the second resonant frequency f2 (83.27 Hz). Therefore, the 

second mode contributes nothing in any case. 
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Appendix 

This appendix gives a proof that the eigenfunctions (the normal 

modes) of Eq. (3) with boundary condition (5) form an orthogonal set. 

Let yes), yep) be cwo eigenfunctions of Eq. (3). The corresponding 

eigenvalues are As = Ss4 and Ap = Sp4, respectively. 

= A y(p) 
P 

(Al) 

(A2) 

where the apostrophe represents the differential with respect to ~, f:x . 
Multiplying both sides of (Al) and (A2) by yep) and yes), respectively, then 

subtracting (A2) from (Al) and integrating from boundary a to d, we get 

(A3) 

We now evaluate the left-hand side of Eq. (A3) by integration by parts: 

d f [yep) y(s)"" - yes) y(p)""} dx 

a 

d d f [yep), y(s)", _ yes), y(p)"'ldx 

a a 

a a 

d 
+ f [y(p)" y(s)" - y(s)" yep),,} dx • 

a 

The last term vanishes. The first cwo terms also vanish due to the boundary 
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condition (5). Therefore, the left-hand side of (A4) is zero. It follows 

that the right-hand side of (A4) should also be zero, namely, 

If As * Ap' then one has 

(A5) 

(A6) 

In other words, the eigenfunctions of Eq. (3) with different eigenvalues are 

orthogonal to each other. This completes our proof. 

The normalization of eigenfunctions in our case is not important. 

Because of some dimensional considerations, we would rather leave (the square 

of) the normalization factor 

d 
N = f y(p) y(p) dx 
'p a 

explicitly in the equations in Part II. Note that Np has the dimension of 

length [inch]. 
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Fig. 2. 

Fig. 1. A model of the magnet-pedestal system. 

!Oo 

x (i","'S) 

The first three normal modes (I, II and III) of the dipole 
system. The two dashed arrows indicate the locations of the 
pedestals (x = 22.3 in and 77.7 in, resp.). Rl and R2 are the 
"rest" points. The deflection Y is in arbitrary unit. 
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The dynamic amplification factor M and the phase angle ~, see 
Eqs. (23) and (26). 
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f, 

f 
The vibration magnification factor of the dipole system as a 
function of the ground vibration frequency. See Table 2. 
Here Ymax and Z are the vibration amplitudes of the girder and 
of the ground motion, respectively; f1 and f3 are the first 
and third normal frequencies of the dipole system. 



LS-77A(3/24/87) 

Addendum to Note LS-77 

LS-77A 
w. Chou 
March 1987 

1. After consulting some vibration experts,l the boundary conditions (6) in 

LS-77 are modified. 

Y , - Y , 
1 - 2 

y" y" 1 2 
EI(Yl'" - Yl "') - kY l = 0 

Yl = Y2 

for x (6' ) 

The same change applies for x = xc. The form of the matrix H, Eq. (10), 

is altered accordingly. By using the method described in LS-77 and the 

new boundary conditions (6'), we recalculate the natural frequencies and 

the normal modes of the dipole syste~ of the APS. The results are given 

in Table l' and Fig. 2'. 

2. The values of the vibration magnification factor, Ymax/Z in Table 2 and 

Fig. 4, should be multiplied by 386.1, the gravitation acceleration 

cons tant. As a resul t, the part (a) of the discussion on page 16 of 

LS-77 is no longer valid. Using the data of Table l' and Fig. 2', the 

values of Ymax/Z are shown in Table 2' and Fig. 4'. The third mode with 

a frequency f3 has no effects on the vibration magnification factor 

because of the zero values of the mode at the supporting points. The 

asymmetric first and fourth modes may contribute additional peaks in 

Fig. 4' if the phase difference between the ground vibrations at two 

supporting points are not negligible. 

Reference 

[1] M. Wambsganss and S. S. Chen, private communication. 



Table I' 
The Na tura1 Frequencies of the Dipole System 

* t1 (in) 1 10 22.3 25 

f1 (Hz) 40.6 43.7 43.3 39.1 

f2 (Hz) 75.8 62.8 45.3 45.2 

f3 (Hz) 201.4 187.8 180.9 181.1 

f4 (Hz) 505.8 499.1 500.7 501.5 

f5 (Hz) 981.0 977.6 979.5 979.2 

* tl is the distance between the ends and the supporting points (see Fig. 1 in 
LS-77). When t1 is equal to 0.223 times the length of the girder, the 
deflection at center and ends are the same. 

Table 2' 
The Vibration Magnification Factor of the Dipole System 

Driving 
f"'f2 tt f"'fstt frequency f<f 2 f2<f<f5 

t 
Ymax 

"'1 1 s t peak ",0 2nd peak -Z-

t ymax and Z are the vibration amplitudes of the girder and of the ground, 
respectively. 

ttf2 = 45.3 Hz and f5 = 979.5 Hz for 11 = 22.3 in (see Table 1'). 

f>f5 

+0 
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Fig. 2'. The first five normal modes of the dipole system of the APS 

Fig. 4'. 

(1 1 = 22.3 in), when the boundary conditions (6') are applied. The 
first and the second mode are apparently close to that of a rigid 
body system. 
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The vibration magnification factor, y /Z, of the dipole system of max 
the APS. 


